Interpreting Deep Visual Representations via Network Dissection

نویسندگان

  • Bolei Zhou
  • David Bau
  • Aude Oliva
  • Antonio Torralba
چکیده

The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can summarize the important factors of variation behind the data. However, CNNs often criticized as being black boxes that lack interpretability, since they have millions of unexplained model parameters. In this work, we describe Network Dissection, a method that interprets networks by providing labels for the units of their deep visual representations. The proposed method quantifies the interpretability of CNN representations by evaluating the alignment between individual hidden units and a set of visual semantic concepts. By identifying the best alignments, units are given human interpretable labels across a range of objects, parts, scenes, textures, materials, and colors. The method reveals that deep representations are more transparent and interpretable than expected: we find that representations are significantly more interpretable than they would be under a random equivalently powerful basis. We apply the method to interpret and compare the latent representations of various network architectures trained to solve different supervised and self-supervised training tasks. We then examine factors affecting the network interpretability such as the number of the training iterations, regularizations, different initializations, and the network depth and width. Finally we show that the interpreted units can be used to provide explicit explanations of a prediction given by a CNN for an image. Our results highlight that interpretability is an important property of deep neural networks that provides new insights into their hierarchical structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expert identification of visual primitives used by CNNs during mammogram classification

This work interprets the internal representations of deep neural networks trained for classification of diseased tissue in 2D mammograms. We propose an expert-in-the-loop interpretation method to label the behavior of internal units in convolutional neural networks (CNNs). Expert radiologists identify that the visual patterns detected by the units are correlated with meaningful medical phenomen...

متن کامل

Visual Interpretability forDeepLearning

This paper reviews recent studies in emerging directions of understanding neural-network representations and learning neural networks with interpretable/disentangled middle-layer representations. Although deep neural networks have exhibited superior performance in various tasks, the interpretability is always an Achilles' heel of deep neural networks. At present, deep neural networks obtain a h...

متن کامل

Symbolic, Distributed and Distributional Representations for Natural Language Processing in the Era of Deep Learning: a Survey

Natural language and symbols are intimately correlated. Recent advances in machine learning (ML) and in natural language processing (NLP) seem to contradict the above intuition: symbols are fading away, erased by vectors or tensors called distributed and distributional representations. However, there is a strict link between distributed/distributional representations and symbols, being the firs...

متن کامل

Interpreting Deep Classifier by Visual Distillation of Dark Knowledge

Interpreting black box classifiers, such as deep networks, allows an analyst to validate a classifier before it is deployed in a high-stakes setting. A natural idea is to visualize the deep network’s representations, so as to “see what the network sees”. In this paper, we demonstrate that standard dimension reduction methods in this setting can yield uninformative or even misleading visualizati...

متن کامل

Bottom-up or Top-down? Dynamics of Deep Representations via Canonical-correlation Analysis

We present a versatile quantitative framework for comparing representations in deep neural networks, based on Canonical Correlation Analysis, and use it to analyze the dynamics of representation learning during the training process of deep networks. We find that layers converge to their final representation from the bottom-up, but that the representations themselves migrate downwards in the net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.05611  شماره 

صفحات  -

تاریخ انتشار 2017